
Silicon Carbide Power MOSFET

Product Summary

 $V_{DS} = 1200 V$ $I_D @ 25^{\circ}C = 69A$ $R_{DS(ON)} = 33m\Omega$

TO-247-4

Features

- High Blocking Voltage
- **High Frequency Operation**
- Low on-resistance
- Fast intrinsic diode with low reverse recovery
- 100% avalanche tested

Benefits

- Higher System Efficiency
- Parallel Device Convenience without thermal runaway
- **High Temperature Application**
- Hard Switching & Higher Reliability
- Easy to drive

Applications

- **Motor Drives**
- Solar / Wind Inverters
- **EV Charging Station**

- AC/DC converters
- DC/DC converters
- Uninterruptable power supplies

Maximum Ratings (T_C=25°C unless otherwise specified)

Parameter	Symbol	Test conditions	Value	Unit
Drain - Source Voltage	V_{DSmax}	V _{GS} =0V, I _D =100μA	1200	V
Gate - Source Voltage (dynamic)	V_{GSmax}	AC (f>1 Hz)	-10 / +25	V
Gate - Source Voltage (static)	V_{GSop}	static	-5 / +20	V
Continuous Drain Current	I _D	V _{GS} = 20V, T _C =25°C V _{GS} = 20V, T _C =100°C	69 49	А
Pulsed Drain Current	I _{D(pulse)}	T _C =25°C	114	Α
Total power dissipation	P_{D}	T _C =25°C	300	W
Avalanche Capability	E _{AS}	$V_{DD} = 100V, V_{GS} = 20V, L = 2mH$	576	mJ
Avalanche Capability	I _{AV}	$V_{DD} = 100V, V_{GS} = 20V, L = 2mH$	24	Α
Operating Junction Temperature	TJ		-55 to 175	°C
Storage Temperature	T _{STG}		-55 to 175	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Revision 2.0 P.1 of 9

Electrical Characteristics (T_C=25°C unless otherwise specified)

Parameter	Symbol	Test conditions	Min	Тур	Max	Unit
Drain-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0V, I_{D} = 100\mu A$	1200			V
		$V_{DS} = V_{GS}$, $I_D = 10$ mA	1.8	2.6	3.7	
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}, I_{D} = 10 \text{mA},$ $T_{J} = 150 ^{\circ} \text{C}$		1.9		V
		$V_{DS} = V_{GS}, I_{D} = 10 \text{mA},$ $T_{J} = 175^{\circ}\text{C}$		1.8		
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = 1200V, V _{GS} = 0V	0	1	50	μΑ
Gate-Source Leakage Current	I_{GSS}	$V_{GS} = 20V, V_{DS} = 0V$	0	1	200	nA
Gate-Source Leakage Current	I _{GSS}	V_{GS} = -5V, V_{DS} = 0V	-200	-1	0	nA
		V _{GS} = 20V, I _D = 40 A		33	45	mΩ
Drain-Source On-State	R _{DS(on)}	$V_{GS} = 20V, I_D = 40 A,$ $T_J = 150^{\circ}C$		50		
Resistance		$V_{GS} = 20V, I_D = 40 A,$ $T_J = 175^{\circ}C$		56		
		V _{GS} = 18V, I _D = 40 A,		37		
		V _{DS} = 20V, I _D = 40 A,		24		
Transconductance	g fs	$V_{DS} = 20V, I_{D} = 40 A,$ $T_{J} = 150^{\circ}C$		22		S
		$V_{DS} = 20V, I_{D} = 40 A,$ $T_{J} = 175^{\circ}C$		22		-
Input capacitance	C _{iss}			2660		
Output capacitance	Coss	$V_{DS} = 1000V, V_{GS} = 0V$		128		pF
Reverse transfer capacitance	C _{rss}	f = 1MHz		9		
Coss Stored Energy	E _{oss}			84		μJ
Total gate charge	Q_g			136		
Gate-source charge	Q _{gs}	$V_{DS} = 800V, V_{GS} = -5V / 20V$ $I_{D} = 40 A,$		36		nC
Gate-drain charge	Q_{gd}	1,5 1,5 1,5		62		
Internal gate input resistance	R _{g(int)}	$f = 1MHz, I_D = 0A$		2.4		Ω
Turn-On Switching Energy	Eon			145		
Turn-Off Switching Energy	E _{OFF}			75		μJ
Turn-On Delay Time	t _{d(on)}	$V_{DS} = 800 \text{ V}, V_{GS} = -5\text{V}/20\text{V},$		12		
Rise Time	t _r	$I_D = 40A, R_{G(ext)} = 2\Omega,$ $L = 200\mu H$		13		ne
Turn-Off Delay Time	$t_{\text{d(off)}}$			29		ns
Fall Time	t _f			8		

Revision 2.0 P.2 of 9

ACM035P120QNN

Silicon Carbide Power MOSFET

Reverse Diode Characteristics (T_C=25°C unless otherwise specified)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Diode Forward Voltage		V _{GS} = -5V, I _{SD} = 20A,		4.6		
	V _{SD}	V_{GS} = -5V, I_{SD} = 20A, T_{J} = 150°C		4.1		V
		$V_{GS} = -5V, I_{SD} = 20A,$ $T_{J} = 175^{\circ}C$		4.0		
Continuous Diode Forward Current	Is	V _{GS} = -5V			55	Α
Reverse Recovery time	t _{rr}			27		ns
Reverse Recovery Charge	Q _{rr}	V_{GS} = -5V, I_{SD} = 40A, V_{R} = 800V, dif/dt = 4600 A/ μ s		790		nC
Peak Reverse Recovery Current	I _{rrm}			50		Α

Thermal Characteristics

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Thermal Resistance	D	junction-case		0.4	0.5	°C/W
(per device)	R _{th(j-c)}	junction-case		0.4	0.5	- C/VV

Revision 2.0 P.3 of 9

Typical Performance

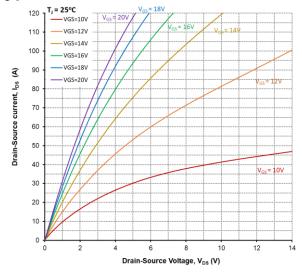


Figure 1. Output Characteristics, T_J = 25°C

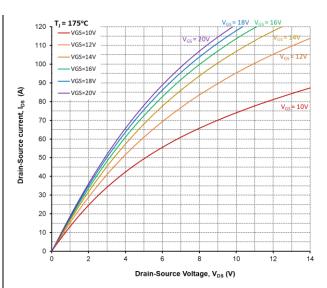


Figure 2. Output Characteristics, T_J = 175°C

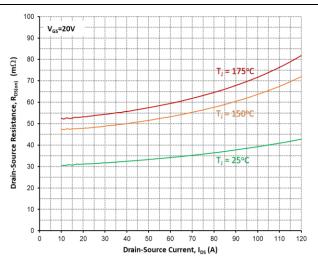


Figure 3. On-Resistance vs. Drain Current For Various Temperatures

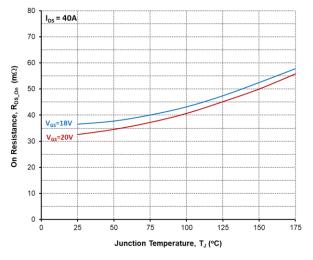


Figure 4. On-Resistance vs. Temperature

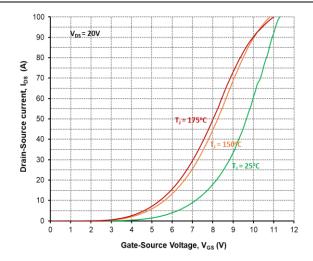


Figure 5. Transfer Characteristic For Various Junction Temperatures

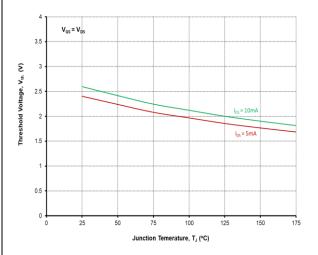


Figure 6. Threshold Voltage vs. Temperature

Revision 2.0 P.4 of 9

Typical Performance

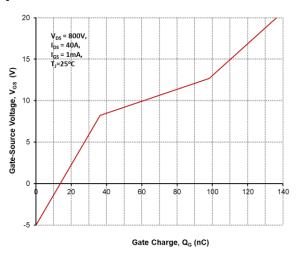


Figure 7. Gate Charge Characteristics

Figure 8. Capacitances vs. Drain-Source Voltage (0-1200V)

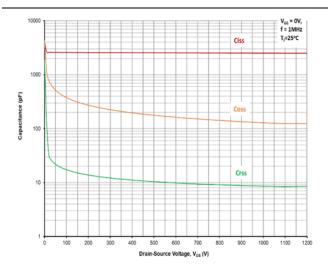


Figure 9. Capacitances vs. Drain-Source Voltage (0-200V)

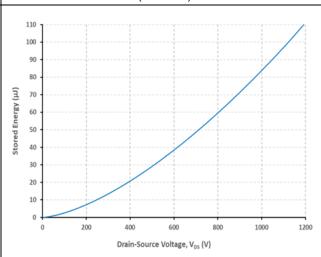


Figure 10. Output Capacitor Stored Energy

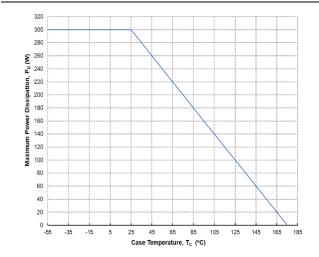


Figure 11. Maximum Power Dissipation Derating vs.

Case Temperature

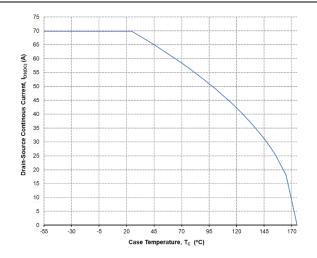


Figure 12. Continuous Drain Current Derating vs. Case Temperature

Revision 2.0 P.5 of 9

Typical Performance

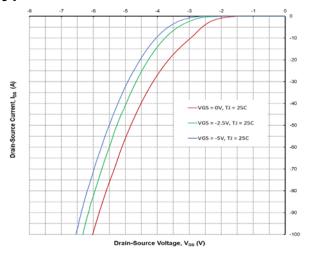


Figure 13. Body Diode Characteristics @ 25°C

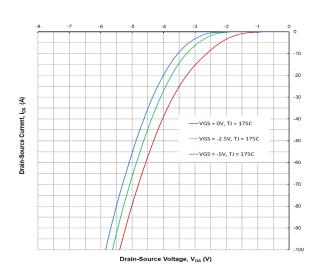


Figure 14. Body Diode Characteristics @ 175°C

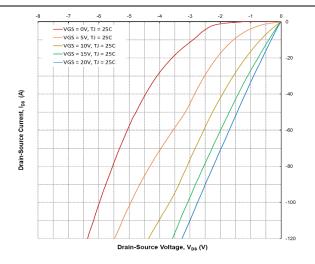


Figure 15. 3rd Quadrant Characteristics @ 25°C

Figure 16. 3rd Quadrant Characteristics @ 175°C

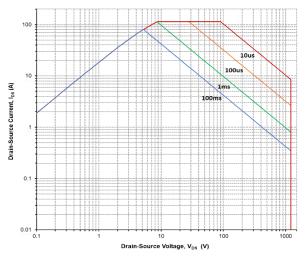


Figure 17. Safe Operating Area

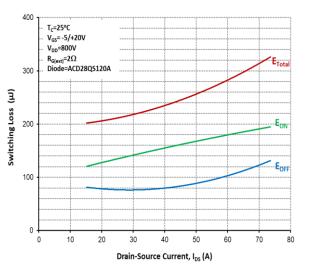
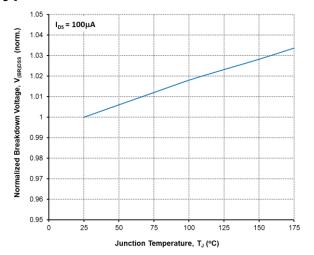
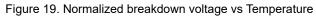


Figure 18. Switching energy vs Drain current

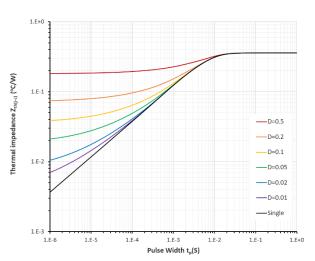
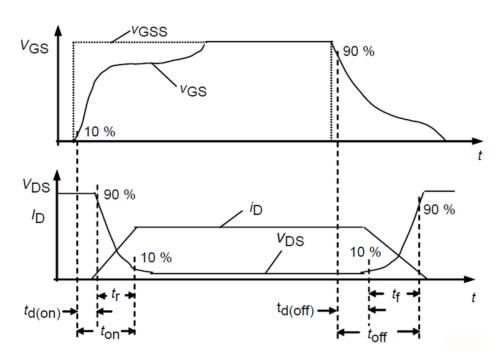

Revision 2.0 P.6 of 9

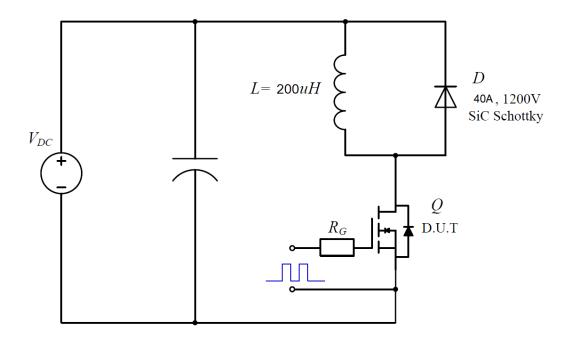


ACM035P120QNN

Silicon Carbide Power MOSFET

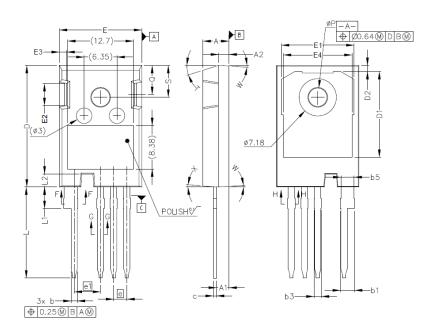
Typical Performance

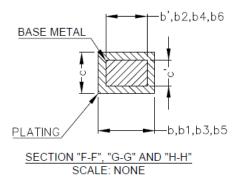




Figure 20. Transient Thermal Impedance (Junction to Case)

Revision 2.0 P.7 of 9

Switching Times Definition and Test Circuit


Revision 2.0 P.8 of 9



Package Dimensions

(TO-247-4 Package)

CVMPOL	MILLIMETERS			
SYMBOL	MIN	MAX		
Α	4.83	5.21		
A1	2.29	2.54		
A2	1.91	2.16		
b'	1.07	1.28		
b	1.07	1.33		
b1	2.39	2.94		
b2	2.39	2.84		
b3	1.07	1.60		
b4	1.07	1.50		
b5	2.39	2.69		
b6	2.39	2.64		
c'	0.55	0.65		
С	0.55	0.68		
D	23.30	23.60		
D1	16.25	17.65		
D2	0.95	1.25		
Е	15.75	16.13		
E1	13.10	14.15		
E2	3.68	5.10		
E3	1.00	1.90		
E4	12.38	13.43		
е	2.54	BSC		
e1	5.08	BSC		
N	4	1		
L	17.31	17.82		
L1	3.97	4.37		
L2	2.35	2.65		
øΡ	3.51	3.65		
Q	5.49	6.00		
Q S T	6.04	6.30		
T	17.5° REF.			
W	3.5 ° REF.			
X	4° REF.			

- 1. ALL METAL SURFACES: TIN PLATED, EXCEPT AREA OF CUT 2. DIMENSIONING & TOLERANCEING CONFIRM TO
- ASME Y14.5M-1994.
- 3. ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES.

P.9 of 9 Revision 2.0